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Solution Guide - Micro III Exam, August 2018

1. Consider the following game G

 

(a) Briefly explain whether G is a game of perfect or imperfect information (1 sentence).
(b) How many proper subgames are there in G (i.e. not including the game itself)? How

many strategies does Player 1 and Player 2 have in this game?
(c) Would your answer to (a) change if we instead considered a game which was identical

to G in all respects, expect that Player 1 could not observe whether Player 2 chose
L or R? What about your answer to (b)? Please write just ‘Yes’ or ‘No’, for each of
these two subquestions.

(d) Solve for the unique pure strategy subgame perfect Nash equilibrium of G.
(e) Solve for all pure strategy Nash equilibria of G. If there are multiple Nash equilibria,

then pick one Nash equilibrium which is not subgame perfect, and explain in words
why this is the case (2-3 sentences).

Answer - Question 1

(a) G is a game of imperfect information, since Player 2 has a non-singleton information
set.

(b) There are two proper subgames. Player 1 has 8 strategies, and Player 2 has 2 strategies.
(c) No (reason: both players would now have a non-singleton information set). Yes (rea-

son: there would now be no proper subgames, and Player 1 would have 4 strategies).
(d) The unique pure strategy SPNE is {(R1L2R2), (L)}.
(e) There are two pure strategy NE: {(R1L2R2), (L)} and {(R1L2L2), (L)}. The latter is

not subgame perfect, because it specifies that Player 1 should take a suboptimal action,
L2, at one of his decision nodes, which constitutes the bottom-right most subgame.
If play actually reached that subgame, then Player 1 would have an incentive to play
R2.
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2. Consider a static game F where two firms produce a homogeneous good and compete in
quantities. Firm 1 and Firm 2 both produce at zero cost. Let qi denote the quantity
produced by Firm i ∈ {1, 2}. Given q1 and q2, the market price is p = 3 − q1 − q2. Both
firms choose quantities simultaneously, and maximize profits.

(a) Solve for the Nash equilibrium of this game. What profits do Firm 1 and Firm 2
earn in equilibrium? What profits would Firm 1 and Firm 2 earn if they instead each
produced half of the monopoly quantity (i.e. half of the quantity that maximizes
total industry profits)?

Now consider a dynamic game, with infinite time horizon, where Firm 1 and Firm 2 play
the stage game F in periods t = 1, 2, 3, . . .. You can assume that both firms discount
future payoffs with factor δ ∈ (0, 1).

(b) Consider a candidate subgame perfect Nash equilibrium where, on the equilibrium
path, each firm produces half of the monopoly quantity in each period. Write down
trigger strategies for Firm 1 and Firm 2 that could potentially sustain such an equi-
librium. Write down an inequality which implicitly defines the values of δ for which
neither firm has an incentive to deviate from their equilibrium strategy (you do not
need to explicitly solve this inequality to isolate δ). Briefly give some intuition as to
why the value of the discount factor affects the incentive to deviate (2-3 sentences).

(c) Now consider a candidate subgame perfect Nash equilibrium where, on the equilibrium
path, firms produce the following quantities: in odd periods, t = 1, 3, 5, . . ., Firm 1
produces the monopoly quantity and Firm 2 produces nothing; and in even periods,
t = 2, 4, 6, . . ., Firm 2 produces the monopoly quantity and Firm 1 produces nothing.
Write down trigger strategies for Firm 1 and Firm 2 that could potentially sustain
such an equilibrium. Write down two inequalities which implicitly define the values
of δ for which neither firm has an incentive to deviate from their equilibrium strategy
(you do not need to explicitly solve these inequalities to isolate δ). Hint 1: think about
what is a firm’s best reply in a period where the other firm produces zero, and in a
period where the other firm produces the monopoly quantity. Hint 2: you may use the
fact that 1 + δ2 + δ4 + . . . = 1

1−δ2 .

(d) Look back at the inequalities you derived in parts (b) and (c). Can you say something
about whether the firms find it easier to sustain collusion if they each produce half
the monopoly quantity in each period (as in (b)) or if they take turns each producing
the monopoly quantity and zero (as in (c)) (3-4 sentences)? If so, briefly give some
intuition (3-4 sentences). Please attempt this question even if you did not successfully
complete the earlier parts.

Answer - Question 2

(a) Firm i profits are πi = qi(3 − qi − qj) for i ∈ {1, 2}. The first-order-condition is
3 − 2qi − qj = 0, yielding a Nash equilibrium of q∗i = q∗j = 1 ≡ qn.e. (notice that
profit functions are strictly concave, so the second-order condition is always satisfied).
Each firm earns equilibrium profits of πn.e. = 1. Industry profits, given total quantity
qi + qj ≡ Q, are πi + πj = Q(3 − Q). This implies a monopoly quantity of Q = 3/2,
and a monopoly price of 3/2. If each firm produced half of the monopoly quantity,
qi = qj = 3/4, then each would earn πmon = 9/8.

(b) Consider the strategy profile (Trigger1, T rigger2), where Triggeri for firm i ∈ {1, 2} is
defined as follows: ‘At t = 1, choose qi = qmon = 3/4. At t ≥ 2, choose qi = qmon = 3/4
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if (q1 = 3/4, q2 = 3/4) were the quantities chosen in all periods t′ ≤ t − 1; otherwise
choose qi = qn.e = 1.’ Off the equilibrium path, both firms always choose the Nash
equilibrium quantities of the stage game, which by definition are best responses to
one another. Thus, neither firm has an incentive to deviate in subgames that are off
the equilibrium path. On the equilibrium path, the relevant condition is 1

1−δπ
mon ≥

πdev + δ
1−δπ

n.e, where πdev are the profits earned by firm i playing a best response to
qj = 1, i.e. setting qi = 9/8, to earn πdev = 81/64. Direct substitution of πmon = 9/8,
πn.e. = 1, and πdev = 81/64 gives:

1
1− δ

9
8 ≥

81
64 + δ

1− δ1.

The strategy profile constitutes a subgame perfect Nash equilibrium for all values of δ
satisfying this inequality. Intuitively, when deciding whether to deviate, a firm faces
a trade-off: a deviation increases current profits, but decreases payoffs in all future
periods, when the firm is punished. The value of the discount factor affects the firm’s
incentive to deviate because it captures the weight that the firm places on future
profits, in relation to current profits, when making this trade off.

(c) Consider the strategy profile (Trigger1′ , T rigger2′), where Trigger1′ for Firm 1 is
defined as follows: ‘In period 1, choose q1 = 3/2. In any odd period t > 1, choose
q1 = 3/2 if (q1 = 3/2, q2 = 0) were the quantities chosen in all odd periods t′ < t
and (q1 = 0, q2 = 3/2) were the quantities chosen in all even periods t′′ < t; otherwise
choose q1 = qn.e = 1. In any even period t ≥ 2, choose q1 = 0 if (q1 = 3/2, q2 = 0)
were the quantities chosen in all odd periods t′ < t and (q1 = 0, q2 = 3/2) were
the quantities chosen in all even periods t′′ < t; otherwise choose qi = qn.e = 1.’
Define Trigger2′ for Firm 2 similarly: ‘In period 1, choose q2 = 0. In any odd period
t > 1, choose q2 = 0 if (q1 = 3/2, q2 = 0) were the quantities chosen in all odd
periods t′ < t and (q1 = 0, q2 = 3/2) were the quantities chosen in all even periods
t′′ < t; otherwise choose q2 = qn.e = 1. In any even period t ≥ 2 period, choose
q2 = 3/2 if (q1 = 3/2, q2 = 0) were the quantities chosen in all odd periods t′ < t
and (q1 = 0, q2 = 3/2) were the quantities chosen in all even periods t′′ < t; otherwise
choose q2 = qn.e = 1.’ Note that a slightly more informal description of the players’
strategies is also acceptable, as long as the description is clear.

To rule out a deviation by Firm 1 in period 1, the relevant inequality can be written
as

1
1− δ2

9
4 ≥

9
4 + δ

1− δ1.

The left-hand side gives Firm 1’s equilibrium profits, which consist of total industry
monopoly profits 2πmon = 9

4 in all even periods, and 0 in all odd periods (here we use
Hint 2). To understand the right-hand side, the best Firm 1 can do by deviating is
just to marginally adjust its quantity (since it can never earn more than total industry
profits), giving approximately 2πmon = 9

4 . Firm 1 then earns profits of 1 in all later
periods where it is punished. An equivalent inequality also captures the incentive to
deviate, on the equilibrium path, for Firm 1 in periods t = 3, 5, . . ., and for Firm 2 in
periods t = 2, 4, 6, . . ..

To rule out a deviation by Firm 2 in period 1, the relevant inequality can be written
as

δ

1− δ2
9
4 ≥

9
16 + δ

1− δ1.

The left-hand side gives Firm 2’s equilibrium profits, which consist of total industry
monopoly profits 2πmon = 9

4 in all even periods, and 0 in all odd periods (here we again
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use Hint 2). The term δ in the numerator reflects the fact that the firm only starts
earning positive profits in period 2, rather than period 1. To understand the right-
hand side, the best Firm 2 can do by deviating in period 1 is to play the best response
to q1 = 3/2, which is q2 = 3/4, and earn profits 9/16. The firm then earns profits of
1 in all later periods where it is punished. An equivalent inequality also captures the
incentive to deviate, on the equilibrium path, for Firm 2 in periods t = 3, 5, . . ., and
for Firm 1 in periods t = 2, 4, 6, . . ..

(d) Comparing the inequalities from parts (b) and (c) suggests the answer here is am-
biguous. Firm 2: In part (c), Firm 2 earns a lower equilibrium a payoff than in part
(b), but also earns a lower payoff from deviating in period 1. Intuitively, the fact that
Firm 2 must wait until period 2 before earning positive profits increases its incentive
to deviate, but the fact that Firm 1 produces the total industry monopoly quantity
in period 1 (rather than half that quantity) has the opposite effect, by driving down
the price associated with a deviation. Firm 1: In part (c), Firm 1 earns a higher
equilibrium payoff than in part (b), but also earn a higher payoff from deviating in
period 1. Still, the inequalities may suggest that Firm 1 faces a lower overall incentive
to deviate in part (c) than in part (b), since the relevant inequality in (c) is satisfied
even for very low values of the discount factor. Intuitively, even if the firm was myopic,
then it could do no better than earning the total industry monopoly profits in period
1, which is what it earns in equilibrium.
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3. A firm is hiring a worker. Workers are characterized by their type θ, which measures their
ability. There are two worker types: θ ∈ {θL, θH}. Nature chooses the worker’s type, with
P(θ = θH) = p and P(θ = θL) = 1 − p. Assume p ∈ (0, 1). The worker observes his own
type, but the firm does not.
The worker can choose his level of education: e ∈ R+. The cost to him of acquiring this
education is

cθ(e) = e

θ

Education is observed by the firm, who then forms beliefs about the worker’s type: µ(θ|e).
We assume that the marginal productivity of a worker is equal to his ability θ and that the
firm is in competition such that it pays the marginal productivity: w(e) = E(θ|e). Thus,
the payoff to a worker conditional on his type and education is

uθ(e) = w(e)− cθ(e)

Suppose for this exercise that θH = 4 and θL = 2.

(a) In a separating equilibrium, the low-ability worker chooses education level eL and
obtains wage wL = w(eL). Is it possible that eL > 0? Explain briefly (max. 3
sentences).

(b) Find a separating pure strategy Perfect Bayesian Equilibrium where the two types
choose education levels eL and eH , respectively, and the low ability type is indifferent
between choosing eL and eH . Assume that off the equilibrium path, the firm assigns
zero probability to the worker being type θH .

(c) Find a pooling pure strategy Perfect Bayesian Equilibrium in which both types choose
education level e, and the low ability type is indifferent between choosing e = 0 and
e = e. Assume that off the equilibrium path, the firm assigns zero probability to
the worker being type θH . Does the pooling equilibrium you found satisfy Signaling
Requirement 6 (‘equilibrium domination’)? You can show this either graphically or
algebraically.

Answer - Question 3

(a) No. Suppose eL > 0. In a separating equilibrium L gets 2− eL/2. For any beliefs, we
have uL(0) = w(0) ≥ θL = 2 > 2− eL/2: a profitable deviation exists.

(b) By assumption, µ(θ|e) is equal to 1 is e = eH and equal to 0 otherwise. Thus, w(e)
is equal to 4 when e = eH and equal to 2 otherwise. We argued above that eL = 0
in equilibrium. Given w(e), e = eL = 0 strictly dominates all e 6= eH for both types.
Hence, only the strategies eL and eH need to be considered. To make the low type
indifferent:

uL(0) = uL(eH) ⇐⇒ 2 = 4− eH
2 ⇐⇒ eH = 4.

Clearly, the high type prefers eH = 4 as for any e′ 6= eH , we have

uH(e′) = 2− e′

4 ≤ 2 < 4− 4
4 = uH(eH).

Hence: the specified w(e) and µ(·|e), together with eL = 0 and eH = 4, constitute a
PBE.

(c) µ(θH |e) is equal to p if e = e and equal to 0 otherwise. Thus, w(e) is equal to
p(4) + (1− p)(2) = 2(1 + p) when e = e and equal to 2 otherwise. Given w(e), e = 0
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strictly dominates all e 6= e for both types. Hence, only these two strategies need to
be considered. To make the low type indifferent:

uL(0) = uL(e) ⇐⇒ 2 = 2(1 + p)− e

2 ⇐⇒ e = 4p.

Clearly, the high type prefers e = e = 4p over e = 0 as

uH(e) = 2(1 + p)− e

4 = 2(1 + p)− 4p
4 = 2 + p ≥ 2 = uH(0)

holds. Hence, the specified w(e), µ(·|e), together with e = 4p, constitutes a PBE.

Checking SR6: For a low-ability type, choosing e always gives a strictly higher payoff
than choosing e if

2(1 + p)− e

2 > 4− e

2 ⇐⇒ 2 > 4− e

2 ⇐⇒ e > 4.

For the high-ability type, choosing e always gives a strictly higher payoff than choosing
e if

2(1 + p)− e

4 > 4− e

4 ⇐⇒ 2 + p > 4− e

4 ⇐⇒ e > 4(2− p) > 4.

Hence, e ∈ (4, 4(2−p)) are equilibrium dominated for L but not forH. SR6: µ(θH |e) =
1 and hence w(e) = 4 for e ∈ (4, 4(2 − p)). The pooling equilibrium does not satisfy
SR6.
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